
Binary operations on prime basis factorials

Vera Jesus1, João Tiago Mexia1, Sandra Oliveira2

1Faculty of Science and Technology-Mathematics Department,
New University of Lisbon, Monte da Caparica 2829-516 Caparica,

Portugal, e-mail: veramjesus@gmail.com, jtm@fct.unl.pt
2College of Business Administration-Polytechnic Institute of Setubal,
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Summary

Binary operations and commutative Jordan algebras may be used to define
product models in which the treatments are a combination of those in the
initial models and nested models in which each treatment of a model nests
all the treatments of another model. This technique is applied here to prime
basis factorials. The notion of a model strictly associated with a com-
mutative Jordan algebra is introduced and applied to prime basis factorials.

Key words: commutative Jordan algebras, binary operations, prime basis
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1. Introduction

Among orthogonal models, the prime basis factorials and their frac-
tional replicates are distinguished for their flexibility.

In our study of these models, we introduce the notion of a model strictly
associated with a Commutative Jordan Algebra, CJA, which enables us to
obtain in a straightforward way UMVUE (uniformely minimum variance
unbiased estimators) and, moreover, enables the use of binary operations to
build more complex designs, using prime basis factorials and their fractional
factorials as building blocks. For the definitions of prime basis factorials,
fractional factorials and blocks, see for instance Dey & Mukerjee (1999),
Montgomery (1997) or Mukerjee & Wu (2006).

Firstly we will study the algebraic structure of such models, showing
how to associate them with commutative Jordan algebras and with orthog-
onal matrices.
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Next we use binary operations on commutative Jordan algebras - see
Fonseca et al. (2006) - to study the crossing and nesting of prime basis
factorials.

2. Commutative Jordan algebras

Commutative Jordan algebras are linear spaces constituted by symmet-
ric matrices that commute and contain the squares of every matrix in the
space. Jordan algebras were introduced by Jordan et al. (1934) to provide
an algebraic foundation for Quantum Mechanics. Later, Seely used these
algebras to carry out inference, moreover Seely (1971) proved that each
CJA has a unique basis {Q1, ...,Qw}, constituted by mutually orthogonal
projection matrices. This basis is called the principal basis of the algebra.
If

Q1 =
1
n
1n1

′
n =

1
n
Jn (1)

where 1
′
n is a matrix n×1 with elements equal to 1, the CJA will be regular

and if
w∑

j=1

Qj = In (2)

it will be complete. In what follows we will only consider complete and
regular CJA. If the vectors of matrices Aj , j = 1, ..., w constitute an or-
thonormal basis for the range of Qj , j = 1, ..., w we will have,

Qj = A
′
jAj , j = 1, ..., w. (3)

Namely,

A1 =
1√
n
1
′
n (4)

when CJA is regular. Moreover, the matrix

P = [A
′
1...A

′
w]

′
(5)

is orthogonal. We say that it is an orthogonal matrix associated with the
CJA with principal basis N (A) = {Q1, ...,Qw}.
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3. Binary operations

We represent by ⊗ the Kronecker matrix product. This matrix opera-
tion is studied for instance in Steeb (1991).

Given {Ql,1, ...,Ql,wl
} the principal basis constituted by nl×nl matrices

of the complete and regular CJA Al, l = 1, 2,

Qj = Q1,j1 ⊗Q2,j2 , j1 = 1, ..., wl, l = 1, 2, (6)

will be the principal basis of the CJA A1 ⊗A2.

The matrices of A1 ⊗A2 are the Kronecker product of the matrices of
A1 by those of A2.

If Pl is an orthogonal matrix associated with Al, l = 1, 2, P1 ⊗P2 will
be an orthogonal matrix associated with A1 ⊗A2.

Moreover the restricted A1 ~A2 Kronecker product of the CJA A1 and
A2 will be the CJA with principal basis constituted by the

Q1,j ⊗
1
n2

Jn2 , j = 1, ..., w1, (7)

and the

In1 ⊗Q2,j , j = 2, ..., w2, (8)

where it is assumed that the matrices in Al are nl × nl, l = 1, 2.

If Al, l = 1, 2, are regular and complete with
Ql,1 = 1

nl
Jnl

, l = 1, 2
wl∑

j=1
Ql,j = Inl

, l = 1, 2 , (9)

N (A1 ~ A2) = N (A1 ⊗ Jn2) ∪ [In1 ⊗N (A∗
2)] with N (A∗

2) = {Q2,2, ...,
Q2,w2} , will be the principal basis of the CJA A1 ~A2. This new CJA will
also be regular and complete.

While the operation ⊗ will be used for model crossing, so the treatments
of the final model will be the combinations of the treatments of the initial
models, the operation ~ will be used for model nesting, all the treatments
of the second model being nested inside each treatment of the first model.

We can see, in Fonseca et al. (2006), that both operations ⊗ and ~ are
associative.
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Another interesting application of ~ will be when we consider r obser-
vations per treatment. Let A(r) be the CJA with principal basis

{
1
rJr,Jr

}
where Jr = Ir − 1

rJr. Then, if A is the relevant algebra when r = 1, when
r > 1 the relevant algebra will be A~A(r).

Moreover, if

Pj =

[
1√
nl

1′nl

Knl

]
, l = 1, 2, (10)

is the orthogonal matrix associated with Al, l = 1, 2,

P =
[
P1 ⊗ 1

n2
Jn2

In1 ⊗K2

]
(11)

will be the orthogonal matrix associated with A1 ~A2.

4. Strictly associated models

Let P = [A
′
1...A

′
w]′ be an orthogonal matrix associated with a commu-

tative Jordan algebra A constituted by n× n matrices with principal basis
{Q1, ...,Qw}.

We put z ∼ N (η,W) when z is normal with mean vector η and co-
variance matrix W.

If we have r repetitions, the model

Y =
m∑

j=1

(
A′

j ⊗
1√
r
1r

)
ηj +

w∑
j=m+1

(
A′

j ⊗
1√
r
1r

)
η∗j + e (12)

will be strictly associated with the CJA A ~ A (r) . We assume that the
vectors ηj , j = 1, ...,m are fixed and that η∗j ∼ N

(
0, σ2

j Igj

)
, j = m +

1, ..., w and e ∼ N
(
0, σ2In

)
, these vectors being independent, and gj =

rank(Aj) = rank(Qj).
Y will be normal with mean vector µ and covariance matrix V, given

by 
µ =

m∑
j=1

(
A′

j ⊗ 1√
r
1r

)
ηj

V =
w∑

j=1
γj

(
Qj ⊗ 1√

r
1r

)
+ σ2Q⊥

, (13)
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where γj = σ2, j = 1, ...,m, γm+l = σ2
m+l + σ2, l = 1, ..., w −m and

Q⊥ = In ⊗ Jr. (14)

Now, see Fonseca et al. (2006),
V−1 =

w∑
j=1

γ−1
j Qj + (σ2)−1Q⊥

det(V) =
w∏

j=1
γ

gj

j (σ2)g
(15)

with g = n (r − 1), and taking ηj =
(
Aj ⊗ 1√

r
1′r

)
µ, j = 1, ..., w

η̃j =
(
Aj ⊗ 1√

r
1′r

)
Y, j = 1, ..., w

, (16)

we will have ηj = 0, j = m + 1, ..., w, as well as

(Y − µ)
′
V−1 (Y − µ) =

m∑
j=1

‖η̃j − ηj‖2

γj
+

w∑
j=m+1

Sj

γj
+

S

σ2
, (17)

where Sj = ‖η̃j‖2 = Y
′
QjY, j = m + 1, ..., w, and S = Y

′
Q⊥Y. Thus the

density of Y can be written as

n (Y|µ,V) =
e
− 1

2

[
m∑

j=1

‖η̃j−ηj‖
2

γj

∑w
j=m+1

Sj
γj

+ S
σ2

]

(2π)n/2
∏w

j=1 γ
gj/2

j (σ2)g/2
. (18)

Moreover, writing z ∼ θχ2
p to indicate that z is the product by θ of a

central chi-square with p degrees of freedom, the
η̃j ∼ N

(
ηj , σ

2Igj

)
, j = 1, ...,m

Sj ∼ γjχ
2
gj

, j = m + 1, ..., w

S ∼ σ2χ2
g

will be complete and sufficient statistics. According to the Blackwell-
Lehmman-Scheffé theorem the η̃j , j = 1, ...,m, the γ̃2

j = Sj

gj
, j = m+1, ..., w,

and σ̃2 = S
g as well as the σ̃2

j = γ̃2
j − σ̃2, j = m + 1, ..., w will be UMVUE.

The interest of the concept of strictly associated models is twofold. As
we have seen it leads to optimal estimators and, as we now show, we can
apply binary operations to strictly associated models to obtain new strictly
associated models.
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5. Crossing models

If we cross the models

Yl =
wl∑

j=1

(
A′

l,j ⊗
1
√

rl
1rl

)
ηl,j + e, l = 1, 2, (19)

strictly associated with the Al ~A (r) , l = 1, 2 we obtain a model

y =
w1∑

j1=1

w2∑
j2=1

(
A′

1,j1 ⊗A′
2,j2 ⊗

1√
r
1r

)
ηj1,j2 + e (20)

strictly associated with the (A1 ⊗A2) ~A (r) .
If the fixed effects parts of the initial models are

ml∑
j=1

(
A′

l,j ⊗
1
√

rl
1rl

)
ηl,j , l = 1, 2, (21)

the fixed part of the new model will be

m1∑
j1=1

m2∑
j2=1

(
A′

1,j1 ⊗A′
2,j2 ⊗

1√
r
1r

)
ηj1,j2 . (22)

6. Nested models

If we nest all treatments of the second initial model inside each treat-
ment of the first initial model, we obtain the new model,

Y =
w1∑

j1=1

(
A′

1,j1
⊗ 1√

n2
1n2 ⊗ 1√

r
1r

)
ηj1+

w2∑
j2=1

(
In1 ⊗A′

2,j2
⊗ 1√

r
1r

)
ηw1+j2−1 + e

(23)

strictly associated with the CJA A1 ~A2 ~A (r) .
As the random effects factors do not nest fixed effects factors, if the

first model has random effects factors, the second cannot have fixed effects
factors. Similarly, if the second model has fixed effects factors, the first
can only have fixed effects factors. Thus, representing for Fx, [Al, Mt] the
fixed effects models, [random, mixed], we will have the following possible
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cases:

1st model 2nd model
Random Random
Mixed Random
Fixed Fixed , Random, Mixed

7. Prime basis factorials

We will consider only the factorial pN design with N (N > 1, integer)
factors each having a prime number p of levels. Numbering the levels from 0
to p−1, the pN treatments may be represented by vectors x = [x1, ..., xN ]

′
,

where xj = 0, ..., p − 1, j = 1, ..., N . These vectors can be ordered by the
indexes

l(x) = 1 +
N∑

j=1

xjp
j−1. (24)

Let LN
[p] be the family of the linear applications

La(x) = a
′
x (25)

whose values are obtained using modulo p arithmetic. The components
of vector a are called the coefficients of application L. These linear ap-
plications and their coefficients constitute linear spaces. These spaces are
isomorphic, then La1(x), ...., Lam(x) are linearly independent if and only if
a1, ...,am are linearly independent. Since these spaces have dimension N
there cannot be more than N linearly independent applications. We will
single out the reduced applications where the first non-null coefficient is
equal to 1. It is easy to see that any two reduced applications are linearly
independent. Let LN

r[p] be the family of such applications. There are

w =
pN − 1
p− 1

(26)

reduced applications.
With L1, ..., Lm linearly independent reduced applications,

[L|b] = [L1, ..., Lm|b1, ..., bm] = {x : Li(x) = bi, i = 1, ...,m} (27)
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will be a set of treatments called a block. Since the system of equations
Li(x) = bi, i = 1, ...,m, enables us to express m components of x as linear
combination of the remaining components, in every [L|b] there will be pN−m

treatments and there will be pm blocks.
We may order the reduced applications L ∈ LN

r[p] according to the in-
crease of indexes l(a). Thus if l(a1) < l(a2) we will have k(a1) < k(a2),
k(a) = 1, ..., w. To each L ∈ LN

r[p] we can associate a p × pN matrix C(L)
with elements

ci,j(L) =

{
0, L(xj) 6= i− 1
1, L(xj) = i− 1

, (28)

i = 1, ..., p and j = 1, ..., pN . It is easy to see that

C(L)C(L)
′
= pN−1Ip (29)

since L takes each of its values for pN−1 treatments. Moreover if L1 and
L2 are linearly independent

C(L1)C(L2)
′
= pN−2Jp (30)

since [L1, L2|b1, b2] contains pN−2 treatments whatever the pair (b1, b2).
Let K be a (p− 1) × p matrix obtained by deleting the first row equal
to 1√

p1
′
p of an orthogonal matrix. Then with q = p

N−1
2 we consider the

matrices

B(L) =
1
q
KC(L), L ∈ LN

r[p]. (31)

We now prove the following:

Proposition 1. The matrix

P(pN ) =

[
1

p
N
2

1pN B(L1)
′
...B(Lw)

′

]′

(32)

is orthogonal and it is associated with the CJA A(pN ) with principal basis

N (pN ) =
{

1
pN

JpN ,Q(L1), ...,Q(Lw)
}

(33)

where

Q(Lj) = B(Lj)
′
B(Lj), j = 1, ..., w. (34)
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Proof. Firstly, according to (13) we have

B(Lj)B(Lj)
′
=

1
q2

KC(Lj)C(Lj)
′
K

′
=

1
pN−1

K
(
pN−1Ip

)
K

′
= KK

′
= Ip,

and for i 6= j,

B(Li)B(Lj)
′
=

1
q2

KC(Li)C(Lj)
′
K

′
=

1
pN−1

K
(
pN−21p1

′
p

)
K

′

=
1
p

(K1p) (K1p)
′
= 0p−1,p−1.

Thus the 1
pN JpN ,Q(L1), ...,Q(Lw) are symmetric, idempotent and mutu-

ally orthogonal, so they will constitute the principal basis of CJA A(pN ).

The model strictly associated with the CJA A(pN ) is

Y = 1pN µ +
∑

L∈LN
r[p]

(B(L)
′
β(L)) + e. (35)

Since the matrices

M(L) = B(L
′
)B(L), L ∈ LN

r[p] (36)

commute, the model is orthogonal; see Fonseca et al. (2006).
If we take r observations per treatment we will have a model strictly

associated with the CJA A(pN ) ~A (r) .
If we take only the treatments in one of the blocks [L1, ..., Lm|b1, ..., bm],

we will have a fractional replicate 1
pm × pN . Usually we take L1, ..., Lm ∈

LN
r[p]. Now {L1, ..., Lm} may be completed to give a basis {L1, ..., Lm,

Lm+1, ..., LN} to LN
[p]. In the subspace generated by the Lm+1, ..., LN there

will be

w+ =
pN−m − 1

p− 1
(37)

reduced linear applications. Let L+N
r[p] be the set of these applications. With

L∗ ∈ L+N
r[p] , C(L∗ | L) will be the sub-matrix of C(L∗) constituted by the

column vectors associated with the x ∈ [L | b]. We can use the indexes of
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the coefficient vectors for the applications in L∗ ∈ L+N
r[p] to order them from

1, ..., w+. Considering the matrices

B(L+
i ) =

1
q
KC(L+

i ), i = 1, ..., w+ (38)

with L+
i ∈ L+N

r[p] , q = p
N+−2

2 , N+ = N −m and C(L+
i ) = C(L+

i | L). We
now prove:

Proposition 2. The matrix

P(pN+) =

[
1

p
N+

2

1pN+B(L+
1 )

′
...B(L+

w)
′

]′

(39)

is orthogonal and is associated with the CJA A(pN+) with principal basis

N (pN+
) =

{
1

pN+ JpN+,Q(L+
1 ), ...,Q(L+

w)
}

(40)

where Q(L+
j ) = B(L+

j )
′
B(L+

1 ), j = 1, ..., w+.

Proof. Firstly, we have

B(L+
j )B(L+

j )
′
=

1
q2

KC(L+
j )C(L+

j )
′
K

′
=

1
pN−1

K
(
pN−1Ip

)
K

′
= KK

′
= Ip,

and for i 6= j we have

B(L+
i )B(L+

j )
′
=

1
q2

KC(L+
i )C(L+

j )
′
K

′
=

1
pN−1

K
(
pN−21p1

′
p

)
K

′

=
1
p

(K1p) (K1p)
′
= 0p−1,p−1.

Thus the 1
pN JpN ,Q(L+

1 ), ...,Q(L+
w) are symmetric, idempotent and mutu-

ally orthogonal, so they will constitute the principal basis of CJA A(pN ).

As before, if we take r observations per treatment we will have a model
strictly associated with the CJA A(pN+

) ~A (r) .
We now can apply the binary operations to prime basis factorials and

their fractional replicates as building blocks of more complex models. In
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this way we overcome the usual limitation - see Mukerjee & Wu (2006) - of
the factors having a prime or prime-power number of levels.

For instance
(

1
pm
1
× pN

1

)
⊗

(
1

pm
2
× pN

2

)
may be treated as a model whose

factors have p1p2 levels.
Once applied the binary operations we obtain models strictly associated

with CJA. We can then use the results in section 3 to carry out the inference.

8. Application

Let us now apply our results to a computer experiment. In this exper-
iment we had two six-level factors. Each of these factors was obtained by
aggregating a three-level factor with a two-level factor. The levels of the
initial factors were represented by x1 and x2 for the two-level factors and
by z1 and z2 for the three-level factors. We aggregated the first [second]
factors in each pair.

We used the reduced linear applications x1+x2 and z1+2z2 to generate
blocks. In the following table we present those blocks, the values for the
different treatments as well as the corresponding indices.

Table 1. Designs, results and indices.

b1 b2 x1 x2 z1 z2 results indices b1 b2 x1 x2 z1 z2 results indices
0 0 0 0 0 0 5.1 1 1 0 0 1 0 0 5.5 3

0 0 1 1 7.3 17 0 1 1 1 7.6 19
0 0 2 2 8.7 33 0 1 2 2 9.4 35
1 1 0 0 7.2 4 1 0 0 0 5.4 2
1 1 1 1 9.2 20 1 0 1 1 7.7 18
1 1 2 2 11.3 36 1 0 2 2 9.6 34

0 1 0 0 0 2 6.2 9 1 1 0 1 0 2 8.3 11
0 0 1 0 5.1 13 0 1 1 0 7.4 15
0 0 2 1 7.3 29 0 1 2 1 9.5 31
1 1 0 2 8.6 12 1 0 0 2 8.2 10
1 1 1 0 9.7 16 1 0 1 0 7.1 14
1 1 2 1 11.8 32 1 0 2 1 9.3 30

0 2 0 0 0 1 5.1 5 1 2 0 1 0 1 7.4 7
0 0 1 2 7.3 21 0 1 1 2 10.3 23
0 0 2 0 6.1 25 0 1 2 0 9.4 27
1 1 0 1 7.4 8 1 0 0 1 7.2 6
1 1 1 2 9.1 24 1 0 1 2 10.3 22
1 1 2 0 8.2 28 1 0 2 0 9.2 26
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For the reduced linear applications connected with the two-level factors
we had the row matrices:

A(x1) =
1
2
[ −1 −1 1 1 ],

A(x2) =
1
2
[ −1 1 −1 1 ],

A(x3) =
1
2
[ −1 1 1 −1 ].

For the reduced linear applications connected with the three-level fac-
tors we had the associated matrices:

A(z1) =
1√
6

[
−1 −1 −1 0 0 0 1 1 1
1√
3

1√
3

1√
3

−2√
3

−2√
3

−2√
3

1√
3

1√
3

1√
3

]
,

A(z2) =
1√
6

[
−1 0 1 −1 0 1 −1 0 1
1√
3

−2√
3

1√
3

1√
3

−2√
3

1√
3

1√
3

−2√
3

1√
3

]
,

A(z1 + z2) =
1√
6

[
−1 0 1 0 1 −1 1 −1 0
1√
3

−2√
3

1√
3

−2√
3

1√
3

1√
3

1√
3

1√
3

−2√
3

]
,

A(z1 + 2z2) =
1√
6

[
−1 0 1 0 −1 1 1 0 −1
1√
3

1√
3

−2√
3

−2√
3

1√
3

1√
3

1√
3

−2√
3

1√
3

]
.

Besides these we also considered the row matrices 1
31

′
9 and 1

21
′
4 for the

two groups of factors.
To complete the sums of squares we nested the two-level factors inside

the three-level factors and ordered the results accordingly. The correspon-
dent indices are those presented in Table 1.

If we had not merged the factors, the origins of variation would be
connected to one or both groups of factors. For the three-level factors we
would have the sums of squares

S(z1) =
∥∥∥∥(

A(z1)⊗
1
2
1
′
4

)
Y

∥∥∥∥2

= 33.455,

S(z2) =
∥∥∥∥(

A(z2)⊗
1
2
1
′
4

)
Y

∥∥∥∥2

= 19.995,
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S(z1 + z2) =
∥∥∥∥(

A(z1 + z2)⊗
1
2
1
′
4

)
Y

∥∥∥∥2

= 0.335,

S(z1 + 2z2) =
∥∥∥∥(

A(z1 + 2z2)⊗
1
2
1
′
4

)
Y

∥∥∥∥2

= 2.66,

for the two-level factors we had

S(x1) =
∥∥∥∥(

1
3
1
′
9 ⊗A(x1)

)
Y

∥∥∥∥2

= 17.500,

S(x2) =
∥∥∥∥(

1
3
1
′
9 ⊗A(x2)

)
Y

∥∥∥∥2

= 15.340,

S(x1 + x2) =
∥∥∥∥(

1
3
1
′
9 ⊗A(x1 + x2)

)
Y

∥∥∥∥2

= 1.823,

and for both groups of factors, the sum of squares would be

S(z1, x1) = ‖(A(z1)⊗A(x1))Y‖2 = 0.2039,

S(z1, x2) = ‖(A(z1)⊗A(x2))Y‖2 = 0.2906,

S(z1, x1 + x2) = ‖(A(z1)⊗A(x1 + x2))Y‖2 = 0.015,

S(z2, x1) = ‖(A(z2)⊗A(x1))Y‖2 = 0.3539,

S(z2, x2) = ‖(A(z2)⊗A(x2))Y‖2 = 0.1106,

S(z2, x1 + x2) = ‖(A(z2)⊗A(x1 + x2))Y‖2 = 0.7717,

S(z1 + z2, x1) = ‖(A(z1 + z2)⊗A(x1))Y‖2 = 0.4406,

S(z1 + z2, x2) = ‖(A(z1 + z2)⊗A(x2))Y‖2 = 0.3839,

S(z1 + z2, x1 + x2) = ‖(A(z1 + z2)⊗A(x1 + x2))Y‖2 = 0.6717,

S(z1 + 2z2, x1) = ‖(A(z1 + 2z2)⊗A(x1))Y‖2 = 1.7439,

S(z1 + 2z2, x2) = ‖(A(z1 + 2z2)⊗A(x2))Y‖2 = 1.2022,

S(z1 + 2z2, x1 + x2) = ‖(A(z1 + 2z2)⊗A(x1 + x2))Y‖2 = 8.255.

Since we aggregated the first [second] factors in the two groups, we had
for the first and second aggregated factors the sum of squares

S(1) = S(z1) + S(x1) + S(z1, x1) = 51.1592,
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S(2) = S(z2) + S(x2) + S(z2, x2) = 35.4458.

The remaining former sums of squares will be grouped into the sum of
squares for blocks given by

S(B) = S(z1 + 2z2) + S(x1 + x2) + S(z1) + 2z2, x1 + x2) = 12.7375

and the sum of squares for error, S. The S1, S2 and S(B) will have five
degrees of freedom each, while S will have twenty degrees of freedom.

Since S=6.2083, we have the F test statistics

F1 =
20
5

S1

S
= 32.96,

F2 =
20
5

S2

S
= 22.83,

FB =
20
5

SB

S
= 8.21

with p value approximately equal to zero.
We now have 20 degrees of freedom for the error instead of 25, which

make it worthwhile to apply this procedure in similar situations.
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Fonseca M., Mexia J.T., Zmyślony R. (2006): Binary operations on Jordan alge-
bras and orthogonal normal models, Linear Algebra and its Applications 417:
75–86.

Jordan P., von Neumann J., Wigner E.P. (1934): On an algebraic generalization
of the quantum mechanical formalism. Ann. Math. II. Ser. 35: 29–64.

Montgomery D. (2005): Design and Analysis of Experiments, 6th ed., John Wiley
& Sons.

Mukerjee R., Wu C.F. (2006): A Modern Theory of Factorial Designs, Springer.
Seely J. (1971): Quadratic subspaces and completeness, the annals of Mathemat-

ical Statistics 42(2): 710–721.
Steeb W. H. (1991): Kronecker Product and Applications, Manheim.
Vanleeuwen D.M., Birkes D.S., Seely J.F. (1999): Balance and orthogonality in

designs for mixed classification models. Ann. Stat., 27(6): 1927–1947


